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Spin-orbit coupling constants A have been evaluated using analytical Hartree-Fock func-
tions for a large number of atomic systems. A reasonably good agreement is found between the
experimental and theoretical values of 4.

Mit Hilfe von analytischen Hartree-Fock Funktionen wurden die Spin-Bahn-Kopplungs-
konstanten A fiir eine groBe Anzahl von Atomsystemen berechnet. Zwischen den experimen-
tellen und den theoretischen Werten von 4 wurde eine angemessen gute Ubereinstimmung ge-
funden.

On a calculé les constantes d’interaction spin-orbite pour des atomes, en employant des
fonctions analytiques de Hartree-Fock. L’accord entre les valeurs théoriques et expérimen-
tales est satisfaisant.

Introduction

In the preceding papers of this series [3, 4, 5, 6,7] the values for various
physical properties, calculated from analytical Hartree-Fock functions, have been
reported for a large number of atomic systems. The satisfactory agreement be-
tween the experimental and the theoretically calculated values has shown that
Hartree-Fock functions provide a reasonable description of these systems.

This paper presents, for the same systems, the spin-orbit coupling constants,
also evaluated using analytical Hartree-Fock functions.

Theoretical Considerations

For an atomic system in the absence of a field, the non-relativistic hamiltonian
operator H can be written, to a good approximation, as

H = Hps + Hpss ¥}
where
n
Hys = 5 [(92]2m) — Zer; + L(rg) Li=se + 2, eXlry], (2)
i=1 i>7
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is called the fine-structure hamiltonian operator; Hpss represents the hyperfine-
structure hamiltonian operator.

In Eq. (2), Z is the nuclear charge of the system under consideration, r; is the
distance from the (point) nucleus to the i-th electron, (of mass m with momentum
p1), 747 is the distance between the ¢-th and j-th electrons, and {(r;) Z; - s; represents
the interaction of the spin dipole moment of the i-th electron with the field pro-
duced by its own orbital motion; this term is often referred to as the “spin-orbit”
interaction. The summations in Eq. (2) extend over all the electrons of the
system.

There are, in addition, other contributions to H, namely, the electron spin-spin
interactions, the orbit-orbit interactions, and the spin-other-orbit interactions.
These contributions, included in Huyg, are very small and are neglected in this
work.

As the exact solutions of Hyg are not known, it is customary to write

Hy=H +7, (3)
where

H' = 3 {(p}f2m) + Utra}
%

U(r;) being the spherically symmetric average potential of the other electrons at
the position of the i-th electron. If a good choice of U(r;) is made, the contribution
of the term V is usually small and can be evaluated by perturbation theory. The
eigenfunctions of H' are combinations of antisymmetrized products of single-
particle functions.

For atoms of small nuclear charge, the electrostatic interaction (3, e?fry) is

i>7
much larger than the spin-orbit term > {(r;) % s;, and therefore this term can be
i

treated as a perturbation. The term e*/ry; commutes with § and L (the total spin
and orbital angular momentum operators § = > s;, L = > ;) and so both L and

(2 ?
S are “good” quantum numbers. The eigenvalues of Hjs are therefore (2L + 1)
(28 + 1)-fold degenerate and the set of these eigenstates comprises a term. The

perturbation > {(r;) I;-s; does not commute with either L or §. However it does
i
commute with J = L 4 §(J being the total angular momentum operator); and the

term splits into multiplets of degeneracy (2J + 1), labelled by the three quantum
numbers L, S, and J (LS- or Russell-Saunders coupling).

If the spin-orbit term is much greater than the electrostatic term (usually true
in heavy elements), the orbital angular momentum vector 7 and the spin angular
momentum vector s of each electron couple to give the corresponding electron
angular momentum vector f, and then the j couple to a resultant J (jj-coupling
scheme). In this case J also commutes with Hy, and therefore J is a “good”
quantum number.

The discussion in this paper is restricted, however, to the LS-coupling scheme.

The matrix elements (in the LSJ scheme) of the spin-orbit hamiltonian Hyo =
> L(re) 84 for a configuration of equivalent electrons 1%, using Racah tensor

K2
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Table 1. Values of n for various atomic configurations® »

Configuration State n Configuration State i
pt 2p 1 a3 Ly 1/3
p? 3P 1/2 G 3/10
dt D 1 24 1/58
a2 3P 1/2 as 3P 1/6
3F 1/2 iP 1/3
a3 P 2/3 3D —1/12
Lp 1/3 5D 1/4
iD 1/2 iF 1/6
iD -1/6 iF -1/12
F —1/6 3G 3/20
24 1/10

2 For the states arising from the 25, p%, d°, d®, d7, and d° configurations
the corresponding values of 7 are the negative of those given for the
corresponding states arising from the %, p?, d%, d2, d3, and d* configura-
tions, respectively.

» When two or more states corresponding to the same value of § and
L arise from a configuration, they can be distinguished by an additional
quantum number, designated as the seniority number v, defined by Racam
[10]; the value of v is included here for these states, as given by Racan
[10], as a left subscript.

algebra [9, 10], are given* by

W(J) = (ySLT | 3, (Ca)s si+ly | 1mySLT) = I, (4)
with %
m = [0+ 1) (20 + D [S(S + 1) 28 + 1) L + 1) 2L + 1)1
(I SL || e | mySE (5a)
=3 +1) =88+ 1) — L(L+ 1)], (5b)
&= 5 | R L)) 0V for) By, (50)

where « is the fine-structure constant and R; denotes the radial function for the
shell** [#,
The so-called doublet separation § is usually defined by the relation

§=W(J)— W — 1) = Tngy, (6)
and the spin-orbit interaction constant by
A=§[28. (7)

The evaluation of these quantities implies the calculation of % and &;. The
reduced matrix elements of the double tensor P are given by Racan [9, 10] for
equivalent p and d electrons. The values of 7, determined using Egq. (5a), are
presented in Tab. 1 for the various terms arising from p? and d# configurations.

* 9 represents the additional quantum numbers needed to completely describe the state
under consideration.

** This designation is not complete. The principal quantum number of the shell should be
included but is omitted in order to avoid confusion with the number of electrons in the shell.
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Usually one writes
(Ur) 8V for = Zwr® = [ — g(r)]}#* 8)
where Zeg is the effective nuclear charge for the electron in the I7 shell; Z is the
true nuclear charge and g(r) denotes the electronic charge (excluding the electron
under consideration) within a sphere of radius r. Therefore Bq. (5¢) transforms
into

b =57 [ (W) BH0) vl — [ Tg)}n®) Rio) o)
0

0
o r
N
=5z -3 [ ) By r2ar | B o3ars )
o 0
&; has been evaluated using the analytical Hartree-Fock functions of CLEMENTT [/]
and MariI [2].

Results and Discussion

The values of the spin-orbit interaction constants for various states of positive
ions, neutral atoms, and negative ions with p? and d” configurations are presented

Table 2. Spin-orbit coupling constants L (tn cm™) for various states of positive ions, neutral
atoms, and negative ions with pr configurationss * (in absolute value)

Configuration State Positive ion Neutral Atom Negative Ion
System A System A System A
2pt 2p Cct 57.9 B 15.3
(42.7) (10.7)
7Pt 3p N+ 60.4 C 21.5 B- 4.5
(41.1) (13.6)
2p* 3p I+ 187.8 0 90.7 N- 36.2
(170.9) (79.3)
2p° 2p Net 597.3 F 316.7 (O 146.6
(521.3) (269.3)
3pt 2p Sit 183.8 Al 68.4
(191.3) (74.7)
3pt 3p P+ 1521 Si 70.7 Al- 20.8
(151.9) (73.1)
3pt sp Ci+ 338.2 S 195.3 P 9741
(348.5) (198.4)
3p° 2p At 952.4. Cl 585.9 S- 324.6
(954.7) (587.3)
4pt 2p Get 1050.0 Ga 4791
(1178.1) (550.8)
4p? 3p Ast 7474 Ge 412.2 Ga~ 143.5
(739.5) (426.4)
4p* 3ip Brt 1303.7 Se 852.4 Ag 485.4
(1569.5) (994.7)
4p° :p Krt 3314.5 Br 2273.0 Se~ 142141
(3580.7) (2456.7)

2 The theoretical values have been calculated using the Hartree-Fock functions of CLE-
MENTI [I] and Marrt [2].

® The corresponding experimental values, calculated from the data of MooxrE [§], are given
in parentheses.
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Table 3. Spin-orbit coupling constanis A (in cm™) for various states of positive ions, neutral
atoms, and negative ions with d» configurations® ® (in absolute value)

Configuration State Positive Ton Neutral Atom Negative Ion
System 2 System yi System 4
3dt 2D Se 96.0
(67.3)
342 3F Set 39.3 Ti 741 Se~ 34.8
(26.1) (54.2)
3d3 i Tit 1.5 v 70.4 Ti~ 39.2
(28.5) (51.0)
3d* 5D v+ 45.1 Cr 7.3 V- 43.7
(32.6) (53.1)
3ds 5D Mnt 83.0 Fe 120.2 Mn— 81.5
(67.0) (104.0)
3d7 i Fet 143.5 Co 201.7 Fe— 141.5
(123.9) (181.3)
3d® 3F Cot 273.9 Ni 375.7 Co™ 271.4
(237.6) (333.0)
3d® 2P Ni+ 687.6
(602.8)

= The theoretical values have been calculated using the Hartree-Fock functions of CLE-

MENTI [1].
® The corresponding experimental values, calculated from the data of Moorg [&], are given

in parentheses.

in Tab. 2 and 3. For comparison the corresponding experimental values are also
presented. The experimental values of 4 have been determined by the relation

M =EJ)— EJ —-1),

using the £{J) values given by MoozrE [§].
Inspection of these tables shows that the agreement is resonably good.
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